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Abstract

We model how sample evidence guides choice: An agent faces a number

of alternative actions. For each action, she observes a sample of outcomes;

she cannot see the distribution from where the sample was drawn. To make

her choice, she evaluates the evidence for the hypothesis that an action is

optimal. The strength of evidence in favor of the hypothesis is measured by

the average decision utility of the outcomes in its sample; its weight gauges

predictive validity and is approximated by the size of the sample. We iden-

tify necessary and sufficient conditions for her choice to be determined by the

interaction of strength and weight, reflecting the determinants of confidence

judgements documented in experiments (Griffin and Tversky, 1992). These

conditions characterize a model consistent with non-trivial uncertainty atti-

tudes and “frequentist” expected utility maximization.
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1 Introduction

After careful research and consultations, a person suffering from a rare illness has

narrowed down two alternative treatments. Ideally, before making her choice, she

would experiment with each treatment; if a degree of chance is involved in the effec-

tiveness of a treatment, she would also experiment a large enough number of times to

ensure predictive validity. In practice, the information available to her are the sam-

ples of outcomes experienced by subjects exposed to the two treatments. Indeed, the

fundamental evidence across the social and medical sciences comes in the form of

samples specifying the outcomes experienced by subjects exposed to an intervention

or treatment.

Samples are useful when the processes generating outcomes are not directly ob-

servable. If they were observable, each action (e.g., a treatment choice) could be

thought of as a draw from a known probability distribution. Several theories exam-

ine choice in this domain including expected utility (Von Neumann and Morgenstern,

1944), rank dependent expected utility (Quiggin, 1982; Yaari, 1987), and prospect

theory (Kahneman and Tversky, 1979; Tversky and Kahneman, 1992). In this pa-

per, we study choice when each action can be thought of as a draw from an unknown

distribution; the only information on the action is a sample of outcomes drawn from

this distribution.

Of course, a sample can be used to make inferences about the underlying distri-

bution. But, exact knowledge of this distribution cannot be derived from any finite

number of observations; it is the limit approachable but not attainable by extended

observation (Koopmans, 1949). Moreover, inference always requires assumptions

about the distribution and the sampling process; the credibility of these assumptions

is a subjective matter (Manski, 2003). Uncertainty in the sense of Knight (1921)

is inescapable; even very good data will only mitigate the problem. The empirical

frequency distributions or posterior distributions cannot simply be taken to stand

for the actual distributions without a loss of relevant information, e.g., sample size,

confidence intervals, prior or parameter assumptions, etc. Even if the use of a prior is

fully justified, a posterior distribution is just a point estimate of the true distribution;

its parameters have their own distributions.
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We directly model how samples shape choice: An agent, the decision-maker,

determines her confidence in the hypothesis that a sample signals her best draw.

To do so, she accounts for the strength and weight of the evidence in favor of the

hypothesis; these are the two determinants of confidence in judgements documented

in experiments by Griffin and Tversky (1992). We quantify the strength of evidence in

a sample as the average subjective utility of its outcomes; weight reflects predictive

validity and we use sample size as its proxy. We provide necessary and sufficient

axioms for choice to depend solely on strength and weight.

As a first approximation, decisions could be driven by strength alone. The at-

tractiveness of outcomes is measured by a decision utility v assigning a numerical

score to each outcome. The strength of a sample with n outcomes α1, . . . , αn is then

the average decision utility over these outcomes,

1

n

n∑
i=1

v(αi). (1)

If the agent chooses maximal strength alternatives, disregarding sample size, her

behavior would be consistent with the “law of small numbers” (Tversky and Kah-

neman, 1971), the common but mistaken presumption that a small sample can be

used to arrive at valid inferences about the distribution from were it was drawn.

In general, the agent factors both strength and weight as if equipped with an

evaluation function V : R × N → R. A sample consisting of n outcomes α1, . . . , αn

is ranked according to the value

V

(
1

n

n∑
i=1

v(αi) , n

)
. (2)

The value is always increasing in strength (the first argument). The interaction

between strength and weight (the second argument) can be more intricate: If strength

is above an endogenously determined threshold, increasing the sample size while

keeping strength fixed increases the value; if strength is below a possibly different

threshold, increasing sample size decreases the value. Depending on strength, the

agent can thus prefer more certain or more uncertain information regarding the

possible outcomes of her actions. However, as sample size increases, uncertainty
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vanishes; the dependence on sample size diminishes. When the weight of evidence is

large enough, actions are compared on primarily on their strength.

Choice is thus consistent with the Law of Large Numbers and expected utility

maximization: If the sample is sufficiently large, the relative frequency of each out-

come approximates its probability; strength then approximates expected utility. The

axiomatization of the model thus provides foundations for a subjective “frequentist”

expected utility model accommodating non-trivial uncertainty attitudes.

The remainder of this paper is organized as follows: Section 2 explains where

we depart from the closest references in the decision theory literature. Section 3

formally introduces the domain of decisions studied in this paper. Section 4 presents

the model and examples. Section 5 presents the axioms and characterizations of the

model. Section 6 concludes. The proofs are gathered in an Appendix.

2 Related literature

The classical account of decision under uncertainty (Savage, 1954) assumes an agent

that understands all the possible resolutions of uncertainty conditional on the re-

alized “state of nature.” For each action, if she knows the state, she knows the

outcome. Sampling via randomized controlled trials is an especially powerful tool

to identify and quantify causal relationships even without knowing the exact mech-

anisms driving these relationships, i.e., when the relevant states cannot be specified.

Moreover, it is well understood that there are decision problems where the states of

nature are not given naturally, nor can they be readily formulated (e.g., Gilboa and

Schmeidler, 1995; Ahn, 2008). This has stimulated the development of alternative,

complementary theories close to ours.

Case-based decision theory (Gilboa and Schmeidler, 1995, 2001; Gilboa et al.,

2002) examines how decisions are guided by data on past “cases.” Each case specifies

the decision problem, the action chosen for the problem, and the resulting outcome.

Consider, for example, a medication (an action) treating different diseases (different

problems); a case then records the health outcome experienced by a person afflicted

by a given disease who used the medication. The key feature of case-based deci-

sion models is a similarity function describing how information is harnessed across
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different related problems and actions (Gilboa and Schmeidler, 1996, 2001). Our

framework is simpler: Similarities between actions can only be gauged on the ba-

sis of their outcomes, not on any other observable characteristics of the actions or

problems.

Accordingly, we focus on the weighing of sample evidence, not on drawing analo-

gies to past cases. In our framework, standard case-based models boil down to

ranking actions on the basis of the average utility of the outcomes in their sample

or on the basis of the summation of the utilities of these outcomes (pages 48, 74 in

Gilboa and Schmeidler, 2001). The average is what we referred to as strength in (1)

and the summation for a sample consisting of n outcomes α1, . . . , αn is

n∑
i=1

v(αi).

There are basic drawbacks to both strength and summation as evaluation criteria:

First, controlling for strength, a larger sample offers greater confidence and may

carry more weight for an uncertainty averse agent. Second, summation puts an

excessive premium on sample size. Large samples mechanically deliver high sums.

The result is inertia, with choices driven by past popularity, i.e., large samples.1

These observations suggest the agent will balance strength and sample size, the core

issue examined in this paper.

Another strand of theories forgoing the states of nature concept models prefer-

ences over menus, i.e., sets of possible outcomes. The agent chooses a menu and then,

in a later stage interpreted as that following the resolution of uncertainty, selects an

outcome from her menu (Kreps, 1979); alternatively, the agent may have no control

over the outcome in her chosen menu (Fishburn, 1972). Menus are fundamentally

different from samples: A sample drawn from a distribution need not contain all

foreseeable outcomes; the support of the distribution generally contains outcomes

not present in the sample. Moreover, a sample may contain multiple observations of

the same outcome, enabling learning about its likelihood; the sample’s size may also

influence the its perceived predictive validity.

1Gilboa and Schmeidler (1996) addresses these issues by embedding case-based decision theory

in a dynamic framework where an agent facing a multi-armed bandit adjusts her aspiration level.
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The most relevant theories of menu choice concerns situations of complete un-

certainty, where the agent has no control over the outcome in her chosen menu.

Decisions can then be modelled as maximizing expected utility under uniform beliefs

over the outcomes in the menus (Fishburn, 1972; Gravel et al., 2012). The charac-

terizations of this model rely on the following “betweenness” axiom:2 If a menu is

preferred over another, then the menu described by the union of the outcomes in the

two original menus is between them in the preference ranking. Applying between-

ness to samples would preclude size considerations, ruling out strict preferences over

equal strength actions. These preferences may however reflect the varying confidence

in outcome estimates across samples. Ruling them out would require decisions to

be consistent with the spurious “law of small numbers” (Tversky and Kahneman,

1971).

Recent research on menu choice has sought sharper characterization results by

enriching the choice set to include lotteries over outcomes (e.g., Dekel et al., 2001,

2007, 2009; Gul and Pesendorfer, 2001; Olszewski, 2007; Ahn, 2008; Dekel and Lip-

man, 2012). Under the assumption that the agent has no control over the outcome

in her chosen menu, this framework thus enables modelling uncertainty about the

distribution outcomes will be drawn from (Olszewski, 2007; Ahn, 2008). Prefer-

ences over menus reveal uncertainty attitudes: Singleton menus are certain since the

agent knows the distribution she will draw from; larger sets are objectively ambigu-

ous/uncertain since the agent does not know what distribution in the menu she will

draw from. The agent’s problem is then to determine how much credence to put on

the foreseeable distributions in each menu. Unlike in our paper, the question of where

distributions come from is not addressed; distributions are directly observable. At

a technical level, the domain specifies preferences over sets containing uncountably

many distributions; this makes modelling attitudes toward sample size impossible.

At a conceptual level, the key betweenness-type axioms characterizing the models

proposed by Olszewski (2007) and Ahn (2008) are also incompatible with concerns

for sample size, by essentially the same arguments discussed above.

Technically, our paper is close to that of Kothiyal, Spinu, and Wakker (2014) who

arrived at a general characterization of an average utility model to evaluate sequence

2Gravel et al. (2012) refers to this axiom as “averaging.”
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of outcomes of variable length. Their goal is to provide weak and transparent neces-

sary and sufficient preference axioms for the average utility model, not to study the

weighing of sample evidence and the associated uncertainty attitudes.

3 Definitions

A sample consists of a finite number of outcomes drawn from a set O of possible

outcomes. The collection of all samples is denoted by S. For each sample S ∈ S and

each outcome α ∈ O, S(α) denotes the number of times the outcome appears in the

sample.

An action is interpreted as a draw from an unknown distribution over O. The

agent can only observe a sample drawn from this distribution. Preferences over ac-

tions can thus be recast as preferences over the corresponding samples. Let % denote

a complete and transitive binary relation over S. The symmetric and asymmetric

parts of % are denoted by ∼ and �, respectively.

For each S ∈ S, the size of S is number of outcomes in S and is denoted by |S|.
Thus, |S| =

∑
α∈O S(α). For each pair S, T ∈ S, S ⊕ T denotes the sample obtained

by pooling the outcomes in S and T . Thus, for each α ∈ O, S⊕T (α) = S(α)+T (α).

For each positive integer n and each S ∈ S, n⊗S denotes the sample obtained pooling

n copies of S. Thus, for each α ∈ O, n⊗ S (α) = n× S(α). Abusing notation, the

sample consisting of a single outcome α ∈ O is denoted by α.

4 Model

Griffin and Tversky (1992) proposed an intuitive explanation of confidence formation

in judgements: People assess the degree to which the available evidence supports a

hypothesis, i.e., the strength of evidence in favor of the hypothesis, and then adjust

for predictive validity, i.e., the weight of evidence. For example, in deciding if a coin

is biased in favor of heads, the strength is the proportion of heads in a sample of coin

tosses and the weight is the size of the sample. People value both strength and weight

but the exact tradeoff between the two is an empirical question. In many settings
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however people are systematically overly influenced by strength to the detriment of

weight relative to a Bayesian benchmark.

We propose a model where strength and weight considerations explain choice

behavior; special cases allow for the bias documented by Griffin and Tversky (1992)

as well as natural Bayesian benchmarks. To arrive at her choice between two actions,

an agent determines the extent to which a sample signals attractive outcomes, i.e.,

the strength of the evidence in the sample. The agent then adjusts for weight or

credence.

We formalize strength as the average decision utility of the outcomes in a sample.

Given a decision utility function v : O→ R and a sample S, the average value taken

by v over the outcomes in the sample is denoted by A(v, S), i.e.,

A(v, S) =
∑
α∈O

S(α)

|S|
v(α). (3)

The range of values taken by this average over all samples is denoted by Av, i.e.,

Av = {x ∈ R : ∃S ∈ S,A(v, S) = x}.

A strength & weight representation of % is a pair of functions v, V such

that v : O → R is not constant, V : Av × N → R is strictly increasing in its first

argument, and, for each pair S, T ∈ S,

S % T ⇔ V (A(v, S), |S|) ≥ V (A(v, T ), |T |). (4)

We will introduce two additional properties that a strength & weight represen-

tation may satisfy. Before doing this, we provide three examples of representations

satisfying these properties. The first example illustrates that our model is consistent

with the textbook example of Bayesian updating.

Example 1. There are two possible outcomes, O = {α, β}. Outcome α is preferred

so v(α) = 1 and v(β) = 0. The agent has a prior over the probability of an α

realization, a Beta distribution with parameters a, b > 0; the mean of this prior is

p = a
a+b

. She evaluates a sample according to the posterior probability of the outcome

being α conditional on observing the sample. That is, for each S ∈ S,

V (A(v, S), n) = Prob(α|S) =
n

a+ b+ n
A(v, S) +

a+ b

a+ b+ n
p.
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A similar strength & weight representation applies to situations with more than

two outcomes.

Example 2. The agent starts out expecting an outcome α0 ∈ O. As evidence accu-

mulates in the form of a larger sample, she turns more sensitive to sample informa-

tion. Then, for each S ∈ S,

V (A(v, S), n) = wn A(v, S) + (1− wn) v(α0)

where wn ∈ [0, 1] is the weight put on the strength of evidence, increases in n, and

wn → 1. Large samples are thus given more weight.

Example 3. The outcomes are possible changes in wealth and O can be taken to

be the real line. Outcome 0 represents no change in wealth and we let v(0) = 0.

The agent evaluates strength values with a function V : R → R that is continuous,

strictly increasing, and such that V(0) = 0. She accounts for weight by discounting

geometrically according to a parameter r ∈ (0, 1). For each S ∈ S,

V (A(v, S), n) = (1− rn)V(A(v, S)).

This strength & weight representation is inspired by the representation of time pref-

erences proposed by Fishburn and Rubinstein (1982) where a monetary gain or loss

in the future is discounted geometrically, allowing for impatience in the domain of

gains and procrastination in the domain of losses.

The first additional property of a strength & weight representation, “conver-

gence,” specifies that, when two samples become large enough, they are primar-

ily compared on the basis of their strength. The represented preferences are then

consistent with expected utility maximization relative to the empirical distribution

functions inferred from the samples. A strength & weight representation v, V is

convergent if there is a strictly increasing function V : Av → R such that,

for each x ∈ Av, V (x, n)→ V(x) as n→∞.

The second additional property of a strength & weight representation “orders”

uncertainty comparisons across strength-weight pairs. Keeping strength constant,
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more certainty in the form of a larger sample is either always good news or it is

always bad news. Moreover, if more certainty is good (bad) news at a given strength

level, it is also good (bad) news at a higher (lower) strength level. A strength

& weight representation v, V is ordered if its range of strength values Av can be

partitioned into up to three sets B,N,G such that,

for each (x, y, z) ∈ B ×N ×G, x < y < z, and, for each positive integer n,

V (x, n) > V (x, n+ 1), V (y, n) = V (y, n+ 1), V (z, n) < V (z, n+ 1).
(5)

Informally, B consists of the strength levels of samples that deliver “bad” out-

comes on average, N consists of the strength levels of samples delivering “neutral”

outcomes on average, and G consists of the strength levels of samples delivering

“good” outcomes on average. Some of these sets may be empty: The case where B

and N are empty can be thought of as describing a “gains domain” where a higher

weight is always desirable. The case where N and G are empty describes a “losses do-

main” were the opposite is true. When B and G are empty, sample size is irrelevant

and evaluation is driven by strength alone.

In Example 1, the partition depends on the value of the prior mean p: B consists

of all strength levels strictly smaller than p, N consists of p, and G consists of all

strength levels strictly greater than p. Analogously, in Example 2, the partition

depends on the value v(α0). In Example 3, B consists of all negative real numbers,

N consists of 0, and G consists of all positive real numbers.

Figure 1 illustrates a convergent and ordered strength & weight representation

v, V when the second argument in V takes values n and k with n > k. The represen-

tation also becomes weight-independent for sufficiently large samples: The 45◦ line

describes an evaluation function that does not depend on its second argument, i.e.,

that depends only on strength. As the second argument increases from k to n the

evaluation function comes closer to the 45◦ line. Evaluation is primarily based on

strength for large samples. For smaller samples, e.g., of sizes n and k, uncertainty

attitudes can display a form of reference dependence: Actions can be evaluated dif-

ferently depending on whether their strength is below c (in B) or above d (in G).

Holding strength constant beyond d, increasing sample size yields a preferable action;

holding strength constant below c, increasing sample size yields a worse one.

10



y
x

strength, Av

45◦

V ( · , k)
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Figure 1: An illustration of a convergent and ordered strength & weight representation v, V . Here

B is the range of strength values below c, N is the range of strength values between c and d, and

G is the range of strength values above d. Observe that, for each pair of positive integers k, n with

k < n, V (x, n) < V (x, k) if x < c, V (y, n) > V (y, k) if y > d, and V (z, n) = V (z, k) if z is between

c and d.

5 Axioms

The first axiom specifies that sample data matters to the agent. She ought to be

sensitive towards outcome variations across samples. However, with very few obser-

vations, these variations may be due to chance. We therefore only require that the

agent can express strict preferences between samples of a possibly very large size.

A1 Sensitivity: There are S, T ∈ S of equal size satisfying S � T .

A weaker “non-triviality” axiom would specify strict preferences between two

arbitrary samples. Conforming with non-triviality but not with sensitivity would

imply indifference between any two samples of the same size. Implausibly, preferences

would then be driven solely by sample size.

The second axiom is an independence condition. It specifies under what circum-

stances further outcome observations do not affect the evaluation of two samples.

Suppose that the agent is comparing distributions F and G on the basis of their

samples and determines that F offers the better draw. Now suppose that, just be-

fore taking her draw from F , she observes one further outcome drawn from F and one
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further outcome drawn from G. Our axiom specifies that she won’t change her mind

if the new outcomes are identical and the samples are of the same size. The marginal

effect of one further equal observation is not sufficient to overturn her choice. The

extra outcomes cancel out in the comparison.

A2 Cancellation: For each pair S, T ∈ S of equal size and each α ∈ O, S � T

implies S ⊕ α � T ⊕ α and S ∼ T implies S ⊕ α ∼ T ⊕ α.

The restriction to samples of equal size is important: Adding an observation to

a sample with ten outcomes enriches it more than adding it to a sample with ten

thousand. This reflects a fundamental psychophysical principle, the Weber-Fechner

law: Stimuli perception is decreasing in the level of the stimulus, i.e., change is

perceived in a log scale. In our context, the relevance of an outcome observation is

marginally decreasing in the size of the sample.

In situations where there are two possible outcomes (a success and failure, a

win and a loss, survival and death, etc.) sensitivity and cancellation are necessary

and sufficient conditions for preferences to have a strength & weight representation.

Additionally, the average decision utility and the fraction of preferred outcomes are

identical measures of strength, as noted in the equivalence of the second and third

statements below.

Theorem 1. If the set of outcomes O has a cardinality of two, then the following

statements are equivalent.

i. % satisfies sensitivity and cancellation.

ii. % has a strength & weight representation v, V .

iii. There are α, β ∈ O satisfying α � β and a function W : [0, 1]×N→ R that is

strictly increasing in its first argument such that, for each pair S, T ∈ S,

S % T ⇔ W (S(α)/|S|, |S|) ≥ W (T (α)/|T |, |T |).

Independence axioms akin to cancellation but lacking the equal size restriction

have been used extensively in theories of menu choice (Barberà et al., 2004). They are

central and referred to as “monotonicity” and sometimes as “cancellation” axioms

in the theory of measurement (Krantz et al., 1971). The restriction to equally sized

menus of foreseeable outcomes has been used in the complete uncertainty framework;
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it is one of the axioms characterizing the uniform expected utility criterion (Gravel

et al., 2012). An analogous restriction has also been used to characterize the aver-

age utility criterion in the comparison of sequences of outcomes of different lengths

(Kothiyal et al., 2014).3

5.1 Identifying uncertainty attitudes

Choice can be driven by the attractiveness of outcomes and by their perceived un-

certainty, as inferred from sample data. We can identify the role of uncertainty by

varying its degree while controlling for outcomes. Comparing two samples with iden-

tical relative outcome frequencies, the larger sample yields a more precise signal of

the underlying distribution. This can be interpreted as a decrease in uncertainty

since the larger sample enables a more precise approximation of the likelihood of

each outcome, yet the likelihood estimate based on the relative frequency is un-

changed. All else equal, the agent may then prefer an action with a larger sample.

However, she may also prefer a smaller sample: An action with a sample consisting

solely of a single “bad” outcome may seem safer than an action with a sample of

a hundred observations of the exact same bad outcome; the sample for the second

action may suggest that the realization of the bad outcome is more certain. There

are also situations where the agent may avoid more precise information: People at

risk for health conditions often avoid costless medical tests that should help them

make better decisions (Golman et al., 2017; Hertwig and Engel, 2016).

Given samples S and T , we will say that S reduces uncertainty in T if the relative

frequencies of outcomes in S and T are identical and S is larger than T .4 If sample S

reduces uncertainty over sample T and S � T , we will say that reducing uncertainty

is beneficial. Having identified uncertainty attitudes, we can specify consistency

properties these attitudes may satisfy.

The third axiom specifies that preferences are monotone with respect to un-

certainty reductions: After a beneficial reduction in uncertainty, each successive

3The analogue to cancellation in Gravel et al. (2012) is referred to as “restricted independence;”

in Kothiyal et al. (2014) it is referred to as “expansion independence.”
4For each α ∈ O, S(α)/|S| = T (α)/|T |, and |S| > |T |.
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reduction is beneficial as well.

A3 Monotonicity: For each S ∈ S and each pair k, l of strictly positive integers,

(k + 1)⊗ S % k ⊗ S implies (l + 1)⊗ S % l ⊗ S.

Knowing whether an agent finds reducing uncertainty beneficial for a sample S

can also enable us to infer if she finds reducing uncertainty beneficial for a sample

T not related to S by an uncertainty reduction. Suppose that reducing uncertainty

is beneficial for a sample T . Consider a sample S of the same size as T that is not

related to T by an increase in uncertainty. A preference for S is then due to the

attractiveness of its outcomes vis-à-vis those in T . Then, reducing uncertainty in

S, making its better outcomes more certain, ought to be beneficial as well. This

criterion enables sorting the samples of a given size into those that benefit from

uncertainty reductions and those that do not. The fourth axiom summarizes these

observations.

A4 Sorting: For each pair S, T ∈ S of equal size with S % T , 2 ⊗ T � T implies

2⊗ S � S and 2⊗ S ≺ S implies 2⊗ T ≺ T .

The fifth axiom specifies when two samples are “large enough” to mitigate un-

certainty in their comparison. Given a sample, an agent can reasonably become

confident in her knowledge of the underlying distribution if the relative frequency

of outcomes stabilises after successive sample enlargements. By the Law of Large

Numbers, the relative frequency of each outcome then approaches its probability. If

we compared two samples and found that after successively scaling both up a large

enough number of times, the agent prefers one of the two scaled up samples. Sample

size then ceases to be a determinant factor in the comparison.

A5 Approachability: For each pair S, T ∈ S, there is a strictly positive integer n

such that, if n⊗ S � n⊗ T , then k ⊗ S � l ⊗ T for all integers k, l greater than n.

Approachability reflects the idea that the agent is ultimately interested in the

outcomes of her choice. Sample size is just a proxy for outcome uncertainty; it only

has instrumental value in learning about the outcome distribution.

Theorem 2. If the set of outcomes O has a cardinality of two, then the following

statements are equivalent.
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i. % satisfies sensitivity, cancellation, monotonicity, sorting, and approachability.

ii. % has a convergent and ordered strength & weight representation v, V .

5.2 Continuous outcomes

Outcomes like commodity bundles, changes in wealth, and waiting times are often

modelled as continuous variables. Sample comparisons can then be required to be

“continuous,” i.e., robust to small outcome perturbations. For example, if samples

S and T satisfy S � T , we should be able to slightly perturb the outcomes in S and

thereby obtain a new sample R such that R � T . Formally, assuming that the space

of possible outcomes is a convex subset of Euclidean space, there is a sufficiently

small number ε > 0 such that R � T if the greatest Euclidean distance between

the outcomes in S and those in R is less than ε. The fact that R is obtained by

perturbing the outcomes in S requires R and S to be of equal size; T can be of a

different size.

For each pair of equally sized samples R and S, the distance between R and S is

the greatest Euclidean distance between the outcomes in R and S. We denote this

distance by d(R, S).5 A subset of samples S ⊆ S is open if each of its elements is in

its interior.6

A6 Continuity: For each S ∈ S, {T ∈ S : T � S} and {T ∈ S : S � T} are open.

Under continuity, our characterizations can be extended to the case where the set

of outcomes is a convex subset of Euclidean space such as a commodity space. The

corresponding strength & weight representation v, V is then such that v is continuous

and V is continuous in its first argument.

Theorem 3. If the set of outcomes O is a convex subset of Euclidean space, then

the following statements are equivalent.

i. % satisfies sensitivity, cancellation, and continuity.

ii. % has a strength & weight representation v, V . Moreover, v is continuous and

V is continuous in its first argument.

5d(R,S) is the maximum value attained by ‖α− β‖ over α, β ∈ O with R(α) ≥ 1 and S(β) ≥ 1.
6For each S ∈ S, there is ε > 0 such that {R ∈ S : d(S,R) < ε} is contained in S.
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Theorem 4. If the set of outcomes O is a convex subset of Euclidean space, then

the following statements are equivalent.

i. % satisfies sensitivity, cancellation, continuity, monotonicity, sorting, and ap-

proachability.

ii. % has a convergent and ordered strength & weight representation v, V . More-

over, v is continuous and V is continuous in its first argument.

5.3 Discrete outcomes

We now turn to situations where O is either finite or countably infinitely. One further

axiom is required: A preference between two equally sized samples can be made

sufficiently strong (by increasing sample size while keeping the relative empirical

distributions in each sample intact) so as not to be reversed by a finite number of

further outcome observations in both samples.

A7 Archimedean: For each pair Q,R ∈ S of equal size with Q � R and each pair

S, T ∈ S of equal size, there is a positive integer n such that (n⊗Q)⊕S % (n⊗R)⊕T .

This is a variant of the Archimedean axioms used to derive additive represen-

tations of weak orders (Roberts and Luce, 1968; Krantz et al., 1971). The axiom’s

formulation is similar to that used by Kothiyal et al. (2014) to characterize the

average utility criterion.

Theorem 5. If the set of outcomes O is either finite or countably infinite, then the

following statements are equivalent.

i. % satisfies sensitivity, cancellation, and Archimedean.

ii. % has a strength & weight representation v, V .

Theorem 6. If the set of outcomes O is either finite or countably infinite, then the

first statement below implies the second one.

i. % satisfies sensitivity, cancellation, Archimedean, monotonicity, sorting, and

approachability.

ii. % has a convergent strength & weight representation v, V .
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Theorem 6 establishes that sensitivity, cancellation, Archimedean, monotonicity,

sorting, and approachability are sufficient conditions for preferences to have a con-

vergent strength & weight representation. Theorem 7 in the Appendix describes a

weaker necessary ordering property for a strength & weight representation to satisfy

these axioms.

6 Conclusion

We modelled how past outcome data informs decisions. Framing these decisions in

terms of precise probabilities without reference to their derivation ignores uncertainty

when the outcome generating processes are not observable. For example, consider

the choice between two experimental treatments for a life-threatening disease: Each

of the 20 subjects receiving the first treatment survived compared to only 960 out

of the 1000 subjects receiving the second treatment. The 100% survival rate under

the first treatment may be a fluke. The second treatment can even be credited with

saving more lives than the first one. Knowing the actual survival probabilities would

make the treatment choice trivial; it is not.

There are at least two further related reasons to avoid framing decisions in terms

of probability distributions:

i. Cognitive psychology research documents that people are hardwired to process

and compare ensembles like samples (Gallistel, 1990; Gallistel and Gelman,

1992; Butterworth, 2001, 2007; Feigenson et al., 2004; Dehaene, 2011). Pre-

senting information in a sample format, “natural frequencies,” improves judge-

ment (Gigerenzer and Hoffrage, 1995; Hoffrage et al., 2000); this contrasts with

the systemic biases documented in probabilistic judgements (see Tversky and

Kahneman, 1971; Kahneman and Tversky, 1972, 1973; Tversky and Kahne-

man, 1974, for the seminal contributions). This suggests a model of choice

that relies on samples as primitives.

ii. When a data generating process is not observable, the distribution describing

it is typically derived from observations gathered in sample form. Modelling

decision-making as a choice over distributions then involves artificial primitives
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and inconsistencies specific to these. For example, the “reduction of compound

lotteries” is a typical assumption in modelling preferences over lotteries.7 Ex-

pected utility theory yields inconsistent predictions when it is not met (Kah-

neman and Tversky, 1979). It may be possible to avoid inconsistencies specific

to the probabilistic domain by presenting the available outcome information in

sample form.

In our model, the agent judges the plausibility of the hypothesis that a given ac-

tion will deliver her optimal outcome on the basis of the available sample data. She

can distinguish between the strength of evidence supporting an action (the average

utility of the outcomes in its sample) and the weight given to this evidence (sample

size). She then combines the strength and weight of the evidence supporting the

hypothesis, as suggested by the intuitive explanation of confidence formation pro-

vided by Griffin and Tversky (1992). There are strength & weight representations

that are descriptive in the sense that they are consistent with the overconfidence in

strength pattern documented by Griffin and Tversky (1992); there are others that

are normative in that they combine the strength & weight of evidence consistently

with a Bayesian benchmark (e.g., Example 1).

Future work may use other measures of strength: A pessimistic agent may asses

strength by the minimum utility of the outcomes in a sample; an optimistic agent

may use the maximum utility instead. More generally, the agent may be equipped

with a rank-dependent measure of strength that can capture the average, the min-

imum, or the maximum utilities as special cases of one functional.8 However, the

average is a natural benchmark: From a descriptive viewpoint, psychologists docu-

7A compound lottery is a probabilistic mixture over probability distributions. The reduction of

compound lotteries requires the agent is able to transform a compound lottery into a probability

distribution over outcomes with the same overall outcome probabilities as the compound lottery;

moreover, the agent ought to be indifferent between the resulting probability distribution and the

compound lottery.
8The characterization of a model with these features requires technical topological or algebraic

conditions on the domain of preferences and space of outcomes (Wakker, 1991, 1993). It also would

rely on a weaker version of the cancellation axiom whereby the preferences between two samples of

the same size are invariant to adding a common observation that is either better or worse than any

outcome in the original samples.
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ment that people have a natural ability to spontaneously use quite precise average

approximations to summarize ensembles of objects of the same general kind and the

same number of elements such as samples of circles with varying areas (Ariely, 2001;

Chong and Treisman, 2003; Kahneman, 2003). From a normative viewpoint, the use

of the average as measure of strength builds a bridge between sample evaluation as

we proposed and expected utility theory under risk. Under reasonable independence

assumptions, as samples grow, the empirical distribution function approaches the

true distribution generating the outcomes in the sample. Our axiomatic analysis

justifies that, as one approaches the true distributions, choice will be consistent with

expected utility maximization.

Extensions. We modelled the determinants of choice when the only information

describing an action is its sample of outcomes. Of course, decisions may be driven by

more information, especially when the available samples are small. For example, in

the case of medications, preferences for a drug with a particular chemical composition

may reflect information or beliefs held by the agent.

To express this formally, consider a set of observable characteristics X reflecting

features of an action other than outcomes. For example, x ∈ X could summarize the

observable chemical composition of a drug, whether it is generic, and its brand; it

could also specify a known prior distribution over the possible outcomes. Suppose

that the agent accounts for these characteristics as well as outcomes in forming her

preferences; this can be modelled by equipping the agent with a preference relation

%∗ on X× S. An action is identified by a pair (x, S) ∈ X× S where x describes the

action’s observable attributes and S its sample of past outcomes. In this paper, we

focused on the case where x ∈ X is fixed across actions. Of course, the observable

characteristics may be important in the decision. However, as evidence accumulates

in the form of large samples, the decision may again be driven by outcomes; the

agent endorsing this view would ascribe to asymptotic consequetialism: For each

pair x, y ∈ X there is a positive integer n such that, for each S ∈ S larger than n,

(x, S) ∼∗ (y, S).

Even more generally, a medication may have been used to treat different health

problems, not just the problem faced by the agent, revealing its broader therapeutic
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and side-effects. This information can then be harnessed across the different prob-

lems. Following the case-based approach pioneered by Gilboa and Schmeidler (1995,

2001), we can introduce a set of decision problems P. The evidence supporting a

decision now comes in the form of triples (p, x, S) ∈ P × X × S. Here, (p, x, S) is

the past case where problem p was tackled |S| times using an action with observable

characteristics x, resulting in the outcomes in sample S. A memory M ⊆ P×X× S
consists of all the cases the agent is aware of. An action with observable character-

istics x for problem p is then identified with the case (p, x, S) and the agent forms

preferences over P×X×S given her memory of past cases.9 To assess the relevance of

these cases to problem p and an action with observable characteristics x, she relies on

a similarity function s : [P×X]2 → [0, 1] with values ranging from s((p, x), (q, y)) = 1

if (q, y) is completely similar to (p, x) and s((p, x), (q, y)) = 0 if it is completely dif-

ferent. A conceivable case-based decision model for this domain would represent the

ranking of an action specified as (p, x, S) by

U(p, x, S) =
∑

(q,y,T )∈M

s((p, x), (q, y)) V (A(v, T ), |T |)

where v, V is a strength & weight representation of the form introduced in Section 4.

An analysis of the above model is beyond the scope of this paper.

Social welfare functions. A long-standing problem in welfare economics is to

determine the appropriateness of a utilitarian, an average utilitarian, or some other

social welfare function when the population of interest varies in size; one of the most

thorny issues here is the “repugnant conclusion” (Parfit, 1976, 1982). A strength

& weight representation is formally similar to a social welfare function comparing

welfare across varying populations (Blackorby and Donaldson, 1984; Blackorby et al.,

2005).10 This social welfare function has two arguments: Population size and the

average utility across people in a social state. Individual utilities vary continuously

and are observable. The analysis is normative, concentrating on ethical issues in

9Gilboa and Schmeidler (1995) use the term “act” referring to what we interpreted as observable

characteristics.
10I thank Geir Asheim for pointing this out.
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welfare evaluation. In our context, a sample can be viewed as the collection of

outcomes experienced by the members of a population under a given policy, i.e.,

an action. The decision utility function used to evaluate strength in our model can

describe how a social planner evaluates each of these outcomes; individual preferences

are not observable. Our analysis however focuses on individual decision-making.
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Online Appendix

Preliminary observations

Proposition 1. Suppose that % satisfies cancellation. Then, for each pair S, T ∈ S
of equal size and each n ∈ N, S % T if and only if n⊗ S % n⊗ T .

Proof. Let S, T ∈ S be such that |S| = |T |. Suppose that S % T . By repeatedly
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applying cancellation, S⊕S % T ⊕S and S⊕T % T ⊕T . Since, T ⊕S = S⊕T , by

transitivity, S ⊕ S % T ⊕ T . Equivalently, 2 ⊗ S % 2 ⊗ T . Continuing in this way,

n⊗S % n⊗T . Thus, S % T implies n⊗S % n⊗T . To prove the converse, suppose

that n ⊗ S % n ⊗ T but S ≺ T . Repeating the above argument, with ≺ instead of

%, we obtain n⊗ S ≺ n⊗ T , a contradiction. Thus, S % T , as desired.

Proposition 2. Sensitivity and cancellation together imply there are α, β ∈ O such

that α � β.

Proof. By sensitivity, there are S, T ∈ S such that |S| = |T | and S � T . Let n = |S|.
Let the n outcomes in S be denoted by α1, . . . , αn so that α1 % · · · % αn. Let the n

outcomes in T be denoted by β1, . . . , βn so that β1 % · · · % βn.

We first show that

n⊗ α1 % S and T % n⊗ βn. (6)

The proof of (6) is by induction: If n = 1, then S = α1 = n ⊗ α1. Let h ∈ N and

assume that n⊗ α1 % S is true whenever n < h. Let n = h and let S ′ ∈ S consist of

all of the outcomes in S except αh. By the inductive hypothesis, (h− 1)⊗ α1 % S ′.

By cancellation, [(h− 1)⊗α1]⊕α1 % S ′⊕α1. Equivalently, h⊗α1 % S ′⊕α1. Since

α1 % αh, cancellation yields S ′⊕α1 % S ′⊕αh = S. Thus, h⊗α1 % S. By induction,

for each n ∈ N, n⊗ α1 % S. The fact that T % n⊗ βn is proven analogously.

By (6), n ⊗ α1 % S � T % n ⊗ βn. Thus, n ⊗ α1 � n ⊗ βn. By Proposition 1,

α1 � βn.

Proof of Theorem 1

Proposition 3. Assume that O = {α, β} and that % satisfies α � β and cancella-

tion. Then, for each pair S, T ∈ S such that S and T are of equal size, S % T if and

only if S(α) ≥ T (α).

Proof. Let S, T ∈ S be of size n. Define s = S(α) and t = T (α). If s = t, then

S = T and there is nothing to prove. Assume instead that s 6= t.
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Assume that s > t. By Proposition 1, (s− t)⊗ α � (s− t)⊗ β. By cancellation,

[(s− t)⊗ α]⊕ [t⊗ α] � [(s− t)⊗ β]⊕ [t⊗ α]. Since

S = [(s− t)⊗ α]⊕ [t⊗ α]⊕ [(n− s)⊗ β] and

T = [(s− t)⊗ β]⊕ [t⊗ α]⊕ [(n− s)⊗ β],

by cancellation, S � T .

Assume that S % T . If s < t the argument in the preceding paragraph implies

that S ≺ T , a contradiction. Thus, s > t.

Proof of Theorem 1. Let O = {α, β} and assume that % satisfies sensitivity and

cancellation. By Proposition 2, without loss of generality, α � β. Let S, T denote

two samples of size k and let n > k. Let S ′ = (n ⊗ α) ⊕ S and T ′ = (n ⊗ α) ⊕ T .

Then, S ′(α) ≥ n > k = T ′(α). By Proposition 3, S ′ � T ′. Thus, % satisfies

Archimedean. By Theorem 5, % has a strength & weight representation v, V . Thus,

the first statement in Theorem 1 implies the second one. We omit the straightforward

proof of the converse. The equivalence of the second and third statements follows by

letting v(α) = 1 and v(β) = 0.

Proof of Theorem 3

Notation: For each n ∈ N and each x ∈ On, let [x] denote the sample consisting

of observations x1, . . . , xn. We can extend % from S to ∪n∈NOn defining an extended

preference relation %e as follows: For each pair x, y ∈ ∪n∈NOn,

x %e y if and only if [x] % [y]. (7)

For each n ∈ N, let Sn consist of all S ∈ S such that |S| = n.

For each S ∈ S and each ξ ∈ O, the expression ξ ∈ S is taken to mean that

S(ξ) ≥ 1. For each S ∈ S and each u : O → R,
∑

ξ∈S u(ξ) is shorthand for∑
ξ∈O S(ξ)u(ξ).

For each ε ∈ R++ and each γ ∈ O, let Bε(γ) denote the open ball of radius ε

around γ in O. Thus, Bε(γ) = {η ∈ O : ‖γ − η‖ < ε} where ‖ · ‖ is the Euclidean

norm.
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Proposition 4. For each n ∈ N and each pair A,B ∈ S with |A| = |B| = n,

i. d(A,B) ≥ 0 and d(A,B) = 0 if and only if A = B,

ii. d(A,B) = d(B,A),

iii. d(A,B) ≤ d(A,C) + d(C,B) for each C ∈ S of size n.

Proof. Let A,B,C ∈ S each contain n outcomes. From the definition of d, it is

obvious that d(A,B) ≥ 0, d(A,B) = 0 if and only if A = B, and that d(A,B) =

d(B,A). Then, for each α ∈ A, each β ∈ B, and each γ ∈ C,

d(C,A) + d(C,B) ≥ ‖γ − α‖+ ‖γ − β‖
= ‖α− γ‖+ ‖γ − β‖
≥ ‖α− γ + γ − β‖ = ‖α− β‖.

Taking the maximum over all α ∈ A and β ∈ B, d(C,A) + d(C,B) ≥ d(A,B).

Proposition 5. Suppose that % is continuous and that n ∈ N, S ∈ S, and α, β ∈ O
are such that n⊗ α % S % n⊗ β. Then, there is γ ∈ O such that n⊗ γ ∼ S.

Proof. Suppose, by way of contradiction, that there is no γ ∈ O such that n⊗γ ∼ S.

Then, the sets A = {γ ∈ O : n⊗ γ � S} and B = {γ ∈ O : n⊗ γ ≺ S} partition O
and are non-empty since α ∈ A and β ∈ B.

Moreover, A and B are open: Let γ ∈ A. By continuity, C = {T ∈ S : T � S} is

open. Thus, since it contains n⊗ γ, there is ε > 0 such that

D = {T ∈ S : d(n⊗ η, T ) < ε} ⊆ C.

Then, for each η ∈ O such that ‖γ − η‖ < ε, d(n ⊗ γ, n ⊗ η) = ‖γ − η‖ < ε. Thus,

n ⊗ η ∈ D ⊆ C. Thus, for each η ∈ O such that ‖γ − η‖ < ε, η ∈ A. Thus, γ is

in the interior of A. Thus, every element of A is in its interior. Thus, A is open.

Similarly, B is open.

Thus, A and B are open, non-empty, and partition a connected set O. This

contradiction establishes that, in fact, there is γ ∈ O such that n⊗ γ ∼ S.

Proposition 6. Suppose that % satisfies cancellation and continuity. Then, for each

S ∈ S, there is α ∈ O such that |S| ⊗ α ∼ S.
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Proof. Suppose that % satisfies continuity and cancellation. Let S ∈ S, n = |S|, and

label the n outcomes in S by α1, α2, . . . , αn so that α1 % α2 % · · · % αn. By the same

induction argument used to establish (6), n ⊗ α1 % S % n ⊗ αn. By Proposition 5,

this implies that there is α ∈ O such that n⊗ α ∼ S.

Proposition 7. Suppose that % is continuous. Then, for each n ∈ N, the preference

relation %e on On is continuous: For each x ∈ On,

{y ∈ On : y �e x} and {y ∈ On : x �e y}

are open with respect to the product topology on On where O is endowed with the

Euclidean topology.

Proof. Let n ∈ N and x ∈ On. We will show that {y ∈ ON : y �e x} is open

with respect to the product topology on On where O is endowed with the Euclidean

topology. Let z ∈ {y ∈ On : y �e x}. Thus, z �e x and, by (7), [z] � [x]. By

continuity, {Y ∈ S : Y � [x]} is open so there is ε > 0 such that

{Y ∈ S : d([z], Y ) < ε} ⊆ {Y ∈ S : Y � [x]}.

Let y ∈ On be such that
∑n

i=1 ‖zi − yi‖ < ε. Then, d([z], [y]) ≤
∑n

i=1 ‖zi − yi‖ < ε.

Thus, [y] � [x] and, by (7), y �e x. Thus, {y ∈ On :
∑n

i=1 ‖zi−yi‖ < ε} is contained

in {y ∈ ON : y �e x}. Thus, if z �e x, then z is in the interior of {y ∈ On : y �e x}.
Thus, {y ∈ On : y �e x} is open. The proof that {y ∈ On : x �e y} is open is

analogous.

Proposition 8. Suppose that % satisfies sensitivity, continuity, and cancellation.

Then, for each n ∈ N such that n ≥ 3, there is a continuous non-constant function

un : O → R such that, for each pair S, T ∈ Sn, S % T if and only if
∑

ξ∈S u
n(ξ) ≥∑

ξ∈T u
n(ξ). Moreover, un is unique up to a positive affine transformation.

Proof. It is straightforward to verify that % satisfies cancellation, continuity, com-

parability, and sensitivity if % can be represented as specified in the Proposition 8.

The affine uniqueness of the representation is also straightforward to verify.

Conversely, suppose that % satisfies sensitivity, continuity, and cancellation. Let

n ∈ N and N = {1, . . . , n}. By Proposition 2, there are α, β ∈ O such that α � β.
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Let k ∈ N and x, y ∈ On be such that xk = α, yk = β, and, for each h ∈ N \ {k},
xh = yh. By cancellation, [x] � [y]. Thus, the extended preference relation %e

satisfies the following property:

∀x ∈ On,∀k = 1, . . . , n, ∃x′k ∈ O s.t. (x′k, x−k) �e x or x �e (x′k, x−k). (8)

Let x, y, z, w ∈ On and I ⊆ N . By cancellation, [xI ]⊕ [zN\I ] % [yI ]⊕ [zN\I ] if and

only if [xI ] % [yI ]. Similarly, [xI ] ⊕ [wN\I ] % [yI ] ⊕ [wN\I ] if and only if [xI ] % [yI ].

Thus,

(xI , z−I) %e (yI , z−I)⇔ [xI ]⊕ [zN\I ] % [yI ]⊕ [zN\I ]

⇔ [xI ] % [yI ]

⇔ [xI ]⊕ [wN\I ] % [yI ]⊕ [wN\I ]

⇔ (xI , w−I) %e (yI , w−I).

Thus,

∀x, y, z, w ∈ On,∀I ⊆ N, (xI , z−I) %e (yI , z−I)⇔ (xI , w−I) %e (yI , w−I). (9)

Then, since %e is continuous on On (Proposition 7) and n ≥ 3, by Debreu’s char-

acterization of separable utility functions (Debreu, 1959; Wakker, 1988), conditions

(8) and (9), ensure that,

∀x, y ∈ On, x %e y ⇔
n∑
i=1

uni (xi) ≥
n∑
i=1

uni (yi) (10)

where uni : O → R is continuous and unique up to an affine transformation so that

there are scalars a > 0 and bi such that any alternative additive representation would

hold if and only if vni = auni + bi.

It remains to show that we can drop the subscript in uni to define un. By way

way of contradiction, suppose that there are i, j ∈ N and α, β ∈ O such that uni (α)+

unj (β) 6= uni (β) + unj (α). Without loss of generality, suppose that uni (α) + unj (β) >

uni (β) + unj (α). Let x, y ∈ O2 be such that xi = α, xj = β and yi = β, yj = α,

respectively. By (10), x �e y. However, [x] = [y] implies [x] ∼ [y]. This contradicts

the definition of %e as an extension of %. Thus,

∀i, j ∈ N,∀α, β ∈ O, uni (α) + unj (β) = uni (β) + unj (α).
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Thus, for each pair i, j ∈ N and each pair α, β ∈ O, uni (α)− unj (α) = uni (β)− unj (β).

Thus, ui − uj is constant. Since each of the ui functions in (10) is unique up to an

affine transformations, uni − unj can be taken to be zero. Thus, given i ∈ N , we can

define un = uni .

Let S, T ∈ Sn and let x, y ∈ On be such that [x] = S and [y] = T . By (7), S % T

if and only if x %e y. By (10) and the observations in the preceding paragraphs,

x %e y if and only if
∑n

i=1 u
n(xi) ≥

∑n
i=1 u

n(yi) where un is continuous, represents

R, and is unique up to an affine transformation. Finally,
∑n

i=1 u
n(xi) ≥

∑n
i=1 u

n(yi)

is equivalent to
∑

ξ∈S u
n(ξ) ≥

∑
ξ∈T u

n(ξ). Thus, S % T if and only if
∑

ξ∈S u
n(ξ) ≥∑

ξ∈T u
n(ξ).

Proposition 9. Suppose that % satisfies sensitivity, continuity, and cancellation.

Then, there is a continuous function v : O→ R such that, for each pair S, T ∈ S of

equal size, S % T if and only if
∑

ξ∈S v(ξ) ≥
∑

ξ∈T v(ξ). Moreover, v is unique up

to a positive affine transformation.

Proof. It is straightforward to verify that % satisfies sensitivity, continuity, and can-

cellation if % can be represented as specified in Proposition 9.

Conversely, suppose that % satisfies sensitivity, cancellation, and continuity. Let

n ∈ N be such that n ≥ 3. By Proposition 8, there is a continuous un : O→ R such

that,

for each pair S, T ∈ Sn, S % T ⇔
∑
ξ∈S

un(ξ) ≥
∑
ξ∈T

un(ξ). (11)

Let k ∈ N be such that k 6= n. By Proposition 8, there is a continuous ukn : O→ R
such that,

for each pair S, T ∈ Skn, S % T ⇔
∑
ξ∈S

ukn(ξ) ≥
∑
ξ∈T

ukn(ξ). (12)

By Proposition 1,

for each pair S, T ∈ Sn, S % T ⇔ k ⊗ S % k ⊗ T . (13)

Combining (11), (12), and (13), for each pair S, T ∈ Sn,∑
ξ∈S

un(ξ) ≥
∑
ξ∈T

un(ξ)⇔
∑
ξ∈k⊗S

ukn(ξ) ≥
∑
ξ∈k⊗T

ukn(ξ)⇔ k
∑
ξ∈S

ukn(ξ) ≥ k
∑
ξ∈T

ukn(ξ).
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Since un is unique up to an affine transformation, it follows that ukn is an affine

transformation of un. Thus,

for each pair S, T ∈ Skn, S % T ⇔
∑
ξ∈S

un(ξ) ≥
∑
ξ∈T

un(ξ). (14)

By Proposition 8, there is a continuous uk : O→ R such that,

for each pair S, T ∈ Sk, S % T ⇔
∑
ξ∈S

uk(ξ) ≥
∑
ξ∈T

uk(ξ). (15)

By Proposition 1,

for each pair S, T ∈ Sk, S % T ⇔ n⊗ S % n⊗ T . (16)

Combining (14), (15), and (16), for each pair S, T ∈ Sk,∑
ξ∈S

uk(ξ) ≥
∑
ξ∈T

uk(ξ)⇔
∑
ξ∈n⊗S

un(ξ) ≥
∑
ξ∈n⊗T

un(ξ)⇔ n
∑
ξ∈S

un(ξ) ≥ n
∑
ξ∈T

un(ξ).

Since uk is unique up to an affine transformation, it follows that un is an affine

transformation of uk. Thus,

for each k ∈ N and each pair S, T ∈ Sk, S % T ⇔
∑
ξ∈S

un(ξ) ≥
∑
ξ∈T

un(ξ).

To complete the proof, let v = un. By Proposition 8, v is unique up to a positive

affine transformation.

Proposition 10. Let I denote an interval in the real line, let N denote a finite set,

and let %N denote a complete and transitive binary relation on I ×N such that,

if x, y, z ∈ I and k, n ∈ N satisfy (x, n) %N (y, k) %N (z, n),

then there is y′ ∈ I such that (y′, n) ∼N (y, k),
(17)

and

for each k ∈ N and each pair x, y ∈ I, (x, k) %N (y, k)⇔ x ≥ y. (18)

Then, there is a function W : I×N → R that represents %N and is strictly increasing

and continuous in its first argument.
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Proof. Let all of the notation and assumptions be as in the statement. The proof is

by induction on the cardinality of N .

Induction basis: Suppose that N has a cardinality of one. Let W : I × N → R be

bounded, and strictly increasing and continuous in its first argument. For each pair

(x, n), (y, k) ∈ I × N , n = k since N contains a single element, and thus, by (18),

(x, n) %N (y, k) if and only if x ≥ y; moreover, since W is strictly increasing in its

first argument, x ≥ y if and only if W (x, n) ≥ W (y, k). Thus, W represents %N , is

bounded, and is strictly increasing and continuous in its first argument.

Induction hypothesis: Let m ∈ N and suppose that, for each N such that |N | < m,

there is a function W̃ : I × N → R that represents %N , is bounded and strictly

increasing and continuous in its first argument.

Induction: Suppose that N has cardinality m. Fix an n ∈ N such that,

for each k ∈ N \ {n} and each x ∈ I, there is y ∈ I with (x, n) %N (y, k). (19)

By the induction hypothesis, there is a function W̃ : I×[N\{n}]→ R that represents

the restriction of %N to I× [N \{n}], that is bounded, and that is strictly increasing

and continuous in its first argument. By (19), I can be partitioned into

A = {x ∈ I : ∃(y, k) ∈ I × [N \ {n}], (x, n) ∼N (y, k)}, and

B = {x ∈ I : ∀(y, k) ∈ I × [N \ {n}], (x, n) �N (y, k)}.

Then,11

A and B are intevals such that inf A = inf I, supA = inf B, supB = sup I. (20)

We consider the two possible cases that follow, showing that we can always define

an appropriate representation of %N on I ×N .

11 Let x ∈ B and z ∈ I be such that z > x. Then, x ∈ B implies (x, n) �N (y, k) for each

(y, k) ∈ I× [N \{n}] and z > x implies, by (18), (z, n) �N (x, n). Combining these, (z, n) �N (y, k)

for each (y, k) ∈ I × [N \ {n}]. Thus, z ∈ B. Thus, B is an interval and there is no x′ ∈ A such

that x′ > x. Thus, A is an interval as well and supA = inf B.
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Case 1: A is empty. Let f : I → R be bounded, strictly increasing, continuous, and

such that, for each (y, k) ∈ I× [N \ {n}], f(x) > W̃ (y, k). Define W : I×N → R by

W (x, k) =

{
W̃ (x, k) if x ∈ I and k 6= n

f(x) if x ∈ I and k = n
for each (x, k) ∈ I ×N .

Then, by construction, W represents %N , is bounded, and is strictly increasing and

continuous in its first argument.

Case 2: A is not empty. Fix an i ∈ N \ {n} such that, for each x ∈ A, there is a

y ∈ I such that (y, i) %N (x, n).12 By (19), for each x ∈ I, there is y′ ∈ I such that

(x, n) %N (y′, i). Altogether,

for each x ∈ A, there are y, y′ ∈ I such that (y, i) %N (x, n) %N (y′, i). (21)

Thus, by (17), for each x ∈ A, there is an x′ ∈ I such that (x′, i) ∼N (x, n); such an

x′ is unique by (18). Thus, define g : A→ I by [for each x ∈ A, (g(x), i) ∼N (x, n)].

Define h : B → R to be bounded, strictly increasing, continuous, and such that

inf{h(x) : x ∈ B} = sup{W̃ (g(x), i) : x ∈ A}. (22)

Define W : I ×N → R by

W (x, k) =


W̃ (x, k) if x ∈ I and k 6= n

W̃ (g(x), i) if x ∈ A and k = n

h(x) if x ∈ B and k = n

for each (x, k) ∈ I ×N .

The demonstration that W represents %N and is strictly increasing and continuous

in its first argument follows in four successive steps.

Step 1. g is strictly increasing: Let x, y ∈ A be such that x < y. Then, by (18),

(y, n) �N (x, n). Thus, (g(x), i) ∼N (x, n) and (g(y), i) ∼N (y, n) implies (g(y), i) �N

(g(x), i). By (18), g(x) < g(y), confirming that g is strictly increasing.

Step 2. g is continuous. Let x, y ∈ A be such that x < y. Since g is strictly

increasing, g(x) < g(y). Let z′ ∈ (g(x), g(y)). By (18), (g(y), i) �N (z′, i) �N

12Such an i exists for otherwise x ∈ B. However, B is disjoint from A.
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(g(x), i). By the definition of g, (y, n) ∼N (g(y), i) and (x, n) ∼N (g(x), i). Thus,

(y, n) �N (z′, i) �N (x, n). By (17), there is z ∈ I such that (z, n) ∼N (z′, i). Thus,

(y, n) �N (z, n) �N (x, n). By (18), z ∈ (x, y). By the definition of g, g(z) = z′.

Altogether,

for each pair x, y ∈ A such that x < y and each z′ ∈ (g(x), g(y)),

there is z ∈ (x, y) such that g(z) = z′.
(23)

Since g is increasing, (23) implies that g is continuous.13

Step 3. W is strictly increasing and continuous in its first argument: For each

k ∈ N \ {n}, W̃ ( · , k) is strictly increasing and continuous. Thus, W ( · , k) is strictly

increasing and continuous. Since i ∈ N \ {n} and g is strictly increasing and contin-

uous on A, W ( · , n) = W̃ (g( · ), i) is strictly increasing and continuous on A. Since

h is strictly increasing and continuous on B, W ( · , n) is strictly increasing and con-

tinuous on B. By (20) and (22), W ( · , n) is then continuous on I. In particular, if

either A or B are empty, W ( · , n) is strictly increasing and continuous.

It remains to show W ( · , n) is strictly increasing when A and B are not empty.

Let s = sup I and a = supA. Recall that inf B = a by (20).

• If s ∈ I, then a ∈ A.14 Since A and B are disjoint, a /∈ B. Then, for each pair

x, y ∈ I such that x < a < y,

W (x, n) < W (a, n) = W̃ (g(a), i) < h(y) = W (y, n).

• If s /∈ I, then a ∈ B.15 Since A and B are disjoint, a /∈ A. Then, for each pair

x, y ∈ I such that x < a < y,

W (x, n) = W̃ (g(x), i) < h(a) = W (a, n) < W (y, n).
13By way of contradiction, suppose that g is discontinuous at a certain y ∈ A. Since g is increasing,

either limw↑y g(w) < g(y) or g(y) < limw↓y g(w). Assume, for example, the former and let x < y.

Since g is increasing, g(x) ≤ limw↑y g(w) < g(y). If z′ ∈ (limw↑y g(w), g(y)) ⊆ (g(x), g(y)), then

there is no z ∈ (x, y) such that g(z) = z′. This contradicts (23). Thus, g is continuous.
14 By (21), for each x ∈ A, there is y ∈ I such that (y, i) %N (x, n). By (18), s ≥ y implies

(s, i) %N (y, i). By definition, for each z ∈ B, (z, n) �N (s, i). Thus, for each x ∈ A and each

z ∈ B, (z, n) �N (s, i) %N (x, n). By (17), there is s′ ∈ I such that (s′, n) ∼N (s, i). Thus, for each

x ∈ A, (s′, n) %N (x, n). By (18), for each x ∈ A, s′ ≥ x so s′ is an upper bound of A. Since i 6= n,

(s′, n) ∼N (s, i) implies s′ ∈ A. Thus, s′ = a.
15 By way of contradiction, suppose that a ∈ A. Then, there is (x, k) ∈ I × [N \ {n}] such that
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Thus, W ( · , n) is strictly increasing.

Step 4. W represents %N : Since W coincides with W̃ on I× [N \{n}], W represents

the restriction of %N to I× [N \ {n}]. It remains to show that, for each pair x, y ∈ I
and each k ∈ N \ {n},

(x, k) %N (y, n)⇔ W (x, k) ≥ W (y, n), (24)

(x, n) %N (y, k)⇔ W (x, n) ≥ W (y, k). (25)

To establish (24), note that either (x, k) %N (y, n) or W (x, k) ≥ W (y, n) imply

y /∈ B. Thus, y ∈ A. If y ∈ A, then (24) follows from

(x, k) %N (y, n)⇔ (x, k) %N (g(y), i)⇔ W̃ (x, k) ≥ W̃ (g(y), i)⇔ W (x, k) ≥ W (y, n).

If x ∈ A, then (25) is established by

(x, n) %N (y, k)⇔ (g(x), i) %N (y, k)⇔ W̃ (g(x), i) ≥ W̃ (y, k)⇔ W (x, n) ≥ W (y, k).

If x ∈ B, then (25) is established as follows: Note that there is a z ∈ A such that

(z, n) %N (y, k).16 By (20), z ∈ A and x ∈ B imply x ≥ z.

• Suppose that (x, n) %N (y, k). Since z ∈ A, (g(z), i) ∼N (z, n). Thus,

(g(z), i) ∼N (z, n) %N (y, k) implies W̃ (g(z), i) ≥ W̃ (y, k). By definition,

W (z, n) = W̃ (g(z), i) and W (y, k) = W̃ (y, k). Thus, W (z, n) ≥ W (y, k).

Since W ( · , n) is increasing, W (x, n) ≥ W (z, n). Thus, W (x, n) ≥ W (y, k).

• Suppose that W (x, n) ≥ W (y, k). By (18), x ≥ z implies (x, n) %N (z, n).

Since (z, n) %N (y, k), (x, n) %N (y, k).

(x, k) ∼N (a, n). Since x < s, there is y ∈ I be such that x < y < s. Then, by (18), (y, k) �N (x, k).

By the definition, z ∈ B implies (z, n) �N (y, k). Altogether, (z, n) �N (y, k) �N (a, n). By (17),

there is y′ ∈ I such that (y′, n) ∼N (y, k). Thus, (y′, n) �N (a, n). By (18), y′ > a. However,

(y′, n) ∼N (y, k) implies y′ ∈ A. This is a contradiction since a is the supremum of A.
16By way of contradiction, suppose that, for each z ∈ A, (y, k) �N (z, n). Let b ∈ B. By

definition, (b, n) �N (y, k). Thus, for each z ∈ A, (b, n) �N (y, k) �N (z, n). By (17), there is

y′ ∈ I such that (y′, n) ∼N (y, k). Thus, for each z ∈ A, (y′, n) �N (z, n). Thus, y′ /∈ A. However,

(y′, n) ∼N (y, k) implies that y′ /∈ B. This is a contradiction since A and B partition I.
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Proposition 11. Let I denote an interval in the real line and let %∗ denote a com-

plete and transitive binary relation on I × N such that,

if x, y, z ∈ I and k, n ∈ N satisfy (x, n) %∗ (y, k) %∗ (z, n),

then there is y′ ∈ I such that (y′, n) ∼∗ (y, k),
(26)

and

for each k ∈ N and each pair x, y ∈ I, (x, k) %∗ (y, k)⇔ x ≥ y. (27)

Then, there is a function W : I×N→ R that represents %∗ and is strictly increasing

and continuous in its first argument.

Proof. Let all the notation and assumptions be as in the statement. By (26), (27),

and Proposition 10, for each n ∈ N, the restriction of %∗ to I × {1, . . . , n} can be

represented by a function W n : I × {1, . . . , n} → R that is strictly increasing and

continuous in its first argument. Moreover, for each n ∈ N, both W n and W n+1

represent the restriction of %∗ to I × {1, . . . , n}. Thus, we can further specify that,

for each n ∈ N and each (x, k) ∈ I × {1, . . . , n}, W n(x, k) = W n+1(x, k). (28)

Taking condition (28) as given, define W : I × N → R, for each (x, n) ∈ I × N, by

W (x, n) = W n(x, n). Since each W n( · , n) is strictly increasing and continuous, W

is strictly increasing and continuous in its first argument.

It remains to show that W represents %∗. Let (x, n), (y, k) ∈ I × N. Then,

W (x, n) = W n(x, n) and W (y, k) = W k(y, k). Without loss of generality, n ≤ k.

By (28), W n(x, n) = W n+1(x, n) = · · · = W k(x, n). Thus, W (x, n) ≥ W (y, k)

if and only if W k(x, n) ≥ W k(y, k). Since W k represents %∗ on I × {1, . . . , k},
W k(x, n) ≥ W k(y, k) if and only if (x, n) %∗ (y, k). Thus, W (x, n) ≥ W (y, k) if and

only if (x, n) %∗ (y, k). Thus, W represents %∗.

Proof of Theorem 3. We start showing that the first statement in Theorem 3 implies

the second one. Let % satisfy sensitivity, continuity, and cancellation. By Proposi-

tion 9, there is a continuous function v : O→ R such that,

for each pair S, T ∈ S with |S| = |T |, S % T ⇔
∑
ξ∈S

v(ξ) ≥
∑
ξ∈T

v(ξ). (29)
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Since O is convex and v is continuous, v(O) is an interval in R. Define a binary

relation %∗ on v(O)× N as follows:

for each pair (x, n), (y, k) ∈ v(O)× N,

(x, n) %∗ (y, k) if there are α, β ∈ O with x = v(α), y = v(β), n⊗ α % k ⊗ β.
(30)

By (30), for each pair (x, n), (y, k) ∈ v(O) × N, (x, n) %∗ (y, k) implies there are

α′, β′ ∈ O with x = v(α′), y = v(β′), and n ⊗ α′ % k ⊗ β′. By (29), for each pair

α, β ∈ O, v(α′) = v(α) implies that n ⊗ α′ ∼ n ⊗ α and v(β′) = v(β) implies that

k ⊗ β′ ∼ k ⊗ β. Thus, n⊗ α′ % k ⊗ β′ implies n⊗ α % k ⊗ β. Thus,

for each pair α, β ∈ O and each pair k, n ∈ N,

n⊗ α % k ⊗ β if α, β ∈ O are such that (v(α), n) %∗ (v(β), k).
(31)

The relation %∗ satisfies the following properties:

• Completeness: Let (x, n), (y, k) ∈ v(O) × N. Then, there are α, β ∈ O such

that v(α) = x and v(β) = y. Since % is complete, either n ⊗ α % k ⊗ β or

n⊗α - k⊗β. By (30), n⊗α % k⊗β implies (x, n) %∗ (y, k) and n⊗α - k⊗β
implies (y, k) %∗ (x, n). Thus, either (x, n) %∗ (y, k) or (y, k) %∗ (x, n).

• Transitivity: Let (x, n), (y, k), (z, l) ∈ v(O)×N be such that (x, n) %∗ (y, k) and

(y, k) %∗ (z, l). Then, there are α, β, γ ∈ O such that v(α) = x, v(β) = y, and

v(γ) = z. By (31), (x, n) %∗ (y, k) implies n ⊗ α % k ⊗ β and (y, k) %∗ (z, l)

implies k ⊗ β % l ⊗ γ. Since, % is transitive, n ⊗ α % l ⊗ γ. By (30),

(x, n) %∗ (z, l).

• Condition (26): Let x, y, z ∈ v(O) and k, n ∈ N be such that (x, n) %∗ (y, k) %∗

(z, n). Then, there are α, β, γ ∈ O such that v(α) = x, v(β) = y, and v(γ) = z.

By (31), n ⊗ α % k ⊗ β % n ⊗ γ. By Proposition 5, there is η ∈ O such that

n⊗ η ∼ k ⊗ β. By (30), letting y′ = v(η), (y′, n) ∼∗ (y, k).

• Condition (27): Let n ∈ N and x, y ∈ v(O). Then, there are α, β ∈ O such that

v(α) = x and v(β) = y. By (29), nv(α) ≥ nv(β) if and only if n⊗ α % n⊗ β.

Thus, x ≥ y if and only if n⊗ α % n⊗ β. By (30) and (31), n⊗ α % n⊗ β if

and only if (x, n) %∗ (y, n). Thus, x ≥ y if and only if (x, n) %∗ (y, n).

Since v(O) is an interval, v(O) = Av. By Proposition 11, there is V : Av × N → R
that represents %∗ and is strictly increasing and continuous in its first argument.
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By Proposition 6, for each pair S, T ∈ S, there are α, β ∈ O such that |S| ⊗ α ∼ S

and |T | ⊗ β ∼ T . By (30) and (31), V (v(α), |S|) ≥ V (v(β), |T |) if and only if

|S| ⊗ α % |T | ⊗ β. By (29), |S| ⊗ α ∼ S if and only if |S|v(α) = |S|A(v, S) and

|T | ⊗ α ∼ T if and only if |T |v(α) = |T |A(v, T ). Thus,

for each pair S, T ∈ S, S % T ⇔ V (A(v, S), |S|) ≥ V (A(v, T ), |T |).

We omit the straightforward proof that the second statement in Theorem 3 implies

the first one.

Proof of Theorem 5

Proof. Assume that O is countable and that % satisfies sensitivity, cancellation, and

Archimedean.

Part 1 (construction of v): Fix θ ∈ O and define %θ as follows: For each pair

S, T ∈ S, S %θ T if there is an integer n at least as large as |S| and |T | such that

S ⊕ [(n − |S|) ⊗ θ] % T ⊕ [(n − |T |) ⊗ θ]. We show that 〈S,%θ,⊕〉 is an “extensive

system” (Roberts and Luce, 1968, page 320). This enables an additive representation

of %θ which in turn will be used to construct v. Claims 1, 2, 3, and 4 below show

that 〈S,%θ,⊕〉 satisfies each of the conditions defining an extensive system.

Claim 0: For each pair S, T ∈ S, if n ≥ max{|S|, |T |} is such that

S ⊕ [(n− |S|)⊗ θ] % T ⊕ [(n− |T |)⊗ θ], (32)

then, for each m ≥ max{|S|, |T |}, S ⊕ [(m− |S|)⊗ θ] % T ⊕ [(m− |T |)⊗ θ].

Suppose that S, T ∈ S and n are as specified in Claim 0. First, we show that we

can replace n by m = n+ 1. By cancellation, (32) implies that

S ⊕ [(n− |S|)⊗ θ]⊕ θ % T ⊕ [(n− |T |)⊗ θ]⊕ θ.

In the above line, the sample in left hand side of % is equal to S⊕ [(n+ 1− |S|)⊗ θ]
and the sample in its right hand side is equal to T ⊕ [(n+ 1− |T |)⊗ θ]. Claim 0 is

thus true for m = n+ 1. Repeating the argument, it is also true for each m > n.
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Second, we show that if n > max{|S|, |T |} we can replace n by m = n − 1. In

(32), the sample in the left hand side of % is equal to S ⊕ [(n − 1 − |S|) ⊗ θ] ⊕ θ
and the sample in its right hand side is equal to T ⊕ [(n − 1 − |T |) ⊗ θ] ⊕ θ. By

cancellation, (32) thus implies that

S ⊕ [(n− 1− |S|)⊗ θ] % T ⊕ [(n− 1− |T |)⊗ θ].

Claim 0 is thus true for m = n− 1. Repeating the argument, it is also true for each

m ≥ max{|S|, |T |} with m < n.

Claim 1: %θ is complete and transitive.

Let S, T ∈ S and suppose that it is not the case that S %θ T . Then, for each

n ≥ max{|S|, |T |}, S ⊕ [(n − |S|) ⊗ θ] ≺ T ⊕ [(n − |T |) ⊗ θ]. Thus, by definition,

T %θ S. Thus, %θ is complete.

Let R, S, T ∈ S and suppose that R %θ S and S %θ T . By the definition of %θ

and Claim 0, there is n ≥ max{|R|, |S|, |T |} satisfying

R⊕ [(n− |R|)⊗ θ] % S ⊕ [(n− |S|)⊗ θ] % T ⊕ [(n− |T |)⊗ θ].

Since % is transitive, R %θ T . Thus, %θ is transitive.

Claim 2: For each triple R, S, T ∈ S, S⊕R ∼θ R⊕S and [S⊕R]⊕T ∼θ S⊕ [R⊕T ].

This follows immediately since, for each triple R, S, T ∈ S, S ⊕ R = R ⊕ S and

[S ⊕R]⊕ T = S ⊕ [R⊕ T ].

Claim 3: For each triple R, S, T ∈ S, R %θ S if and only if R⊕ T %θ S ⊕ T .

Let R, S, T ∈ S and n ≥ max{|R|+ |T |, |S|+ |T |}. Then,

R %θ S ⇔ R⊕ [(n− |R|)⊗ θ] % S ⊕ [(n− |S|)⊗ θ]
⇔ R⊕ [(n− |R|)⊗ θ]⊕ T % S ⊕ [(n− |S|)⊗ θ]⊕ T
⇔ [R⊕ T ]⊕ [(n− |R⊕ T |)⊗ θ]⊕ [|T | ⊗ θ] % [S ⊕ T ]⊕ [(n− |S ⊕ T |)⊗ θ]⊕ [|T | ⊗ θ]
⇔ [R⊕ T ]⊕ [(n− |R⊕ T |)⊗ θ] % [S ⊕ T ]⊕ [(n− |S ⊕ T |)⊗ θ]
⇔ R⊕ T %θ S ⊕ T
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where the first equivalence follows from the definition of %θ and Claim 0, the second

equivalence follows from cancellation, the third equivalence follows from rearrang-

ing the previous line, the fourth equivalence follows from cancellation, and the last

equivalence follows from the definition of %θ.

Claim 4: For each pair Q,R ∈ S with Q �θ R and each pair S, T ∈ S, there is a

positive integer n such that [n⊗Q]⊕ S %θ [n⊗R]⊕ T .

Let Q,R ∈ S be such that Q �θ R and S, T ∈ S. Let q, r, s, t denote the sizes

of Q,R, S, T respectively. Let k ≥ max{q, r} and l ≥ max{s, t}. By Observation 2,

Q �θ R implies that Q⊕ [(k− q)⊗ θ] � R⊕ [(k− r)⊗ θ]. Thus, by the Archimedean

axiom, there is a positive integer n such that

n⊗{Q⊕ [(k−q)⊗θ]}⊕{S⊕ [(l−s)⊗θ]} % n⊗{R⊕ [(k−r)⊗θ]}⊕{T⊕ [(l−t)⊗θ]}.

Rearranging,

{[n⊗Q]⊕ S}⊕ {[nk+ l− (nq+ s)]⊗ θ} % {[n⊗R]⊕ S}⊕ {[nk+ l− (nr+ t)]⊗ θ}

Since [n ⊗ Q] ⊕ S has size nq + s, [n ⊗ R] ⊕ S has size nr + t, and nk + l ≥
max{nq + s, nr + t}, by the definition of %θ, [n⊗Q]⊕ S %θ [n⊗R]⊕ T .

By Claims 1, 2, 3, and 4, 〈S,%θ,⊕〉 is an extensive system. By Theorem 3 in

Roberts and Luce (1968) this is a necessary and sufficient condition for the existence

of w : S→ R such that, for each pair S, T ∈ S,

(i) w(S ⊕ T ) = w(S) + w(T );

(ii) S %θ T if and only if w(S) ≥ w(T );

(iii) if w̃ : S→ R satisfies (i) and (ii), then there is a scalar a > 0 such that w̃ = aw.

By repeatedly applying (i), for each S ∈ S, w(S) =
∑

α∈O S(α)w(α). By the

definition of %θ, for each pair S, T ∈ S with |S| = |T |, S %θ T if and only if S % T .

Thus, by (ii) and (iii), if v is a positive affine transformation of w, then

∀S, T ∈ S with |S| = |T |, S % T ⇔ A(v, S) ≥ A(v, T ). (33)

By sensitivity, v is not-constant.
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Part 2 (construction of V ): For each n ∈ N, each sample of size n can be specified

as a point in On. Since O is countable, the standard Cantor diagonalization argument

shows that On is itself countable; the set of all samples of size n is thus countable.

Thus, S, the union over n ∈ N of all sets of samples of size n is itself countable. Since

% is a complete and transitive relation on S, it has a utility representation U : S→ R
(e.g., Kreps, 1988): For each pair S, T ∈ S,

U(S) ≥ U(T ) if and only if S % T.

Let v : O → R denote the non-constant function identified in the first part of the

proof. By (33), we can then define V : R× N→ R to be such that,

1. for each S ∈ S, V (A(v, S), |S|) = U(S),

2. for each k ∈ N, V ( · , k) is strictly increasing.

Then, for each pair S, T ∈ S, applying the definition of U followed by that of V ,

S % T ⇔ U(S) ≥ U(T )

⇔ V (A(v, S), |S|) ≥ V (A(v, T ), |T |).

Thus, the first statement in Theorem 5 implies the second one. We omit the straight-

forward proof that the second statement in Theorem 5 implies the first one.

Remark 1. Note that sensitivity is only invoked in the above proof to guarantee

that v is non-constant. The proof can thus also be used to characterize a generalized

strength & weight representation v, V where the requirement that v is non-constant

is dropped if the sensitivity axiom is dropped. Thus, % satisfies cancellation and

Archimedean if and only if % has a strength & weight representation v, V where v

may be constant.

Proof of Theorems 2, 4, and 6

Proposition 12. Suppose that % satisfies monotonicity, sorting, and that it has

a strength & weight representation v, V . For each x ∈ Av, let Sx ∈ S denote the

smallest sample with A(v, Sx) = x and let sx = |Sk|. Let

B = {x ∈ Av : ∃k, l ∈ N, l < k, V (x, ksx) < V (x, lsx)},
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N = {x ∈ Av : ∃k, l ∈ N, l < k, V (x, ksx) = V (x, lsx)},
G = {x ∈ Av : ∃k, l ∈ N, l < k, V (x, ksx) > V (x, lsx)}.

Then, the following conditions hold:

(a) For each n ∈ N and each x ∈ Av,

V (x, (n+ 1)sx) < V (x, nsx) if x ∈ B,

V (x, (n+ 1)sx) = V (x, nsx) if x ∈ N ,

V (x, (n+ 1)sx) > V (x, nsx) if x ∈ G.

(b) The sets B,N,G partition Av.

(c) For each (x, y, z) ∈ B ×N ×G, x < y < z.

(d) For each n ∈ N, each x ∈ Av, and each S ∈ S such that x = A(v, S),

V (x, n|S|) > V (x, (n+ 1)|S|) if x ∈ B,

V (x, n|S|) = V (x, (n+ 1)|S|) if x ∈ N ,

V (x, n|S|) < V (x, (n+ 1)|S|) if x ∈ G.

Proof. Let all the assumptions and notation be as specified in the above statement.

(a) Let n ∈ N and x ∈ B. Since x ∈ B, there is a pair k, l of positive integers such

that k > l and V (x, ksx) < V (y, lsx). By way of contradiction, suppose that n is such

that V (x, (n + 1)sx) ≥ V (x, nsx). Since v, V is a strength & weight representation,

k ⊗ Sx ≺ l ⊗ Sx and (n + 1) ⊗ Sx % n ⊗ Sx. By monotonicity, for each m ∈ N,

(m + 1) ⊗ Sx % m ⊗ Sx. Thus, k ⊗ Sx % (k − 1) ⊗ Sx % · · · % l ⊗ Sx. Thus,

k ⊗ Sx % l ⊗ Sx, a contradiction. Thus, (n + 1) ⊗ Sx ≺ n ⊗ Sx. Since v, V is

a strength & weight representation, V (x, (n + 1)sx) < V (x, nsx). The proofs that

V (x, (n + 1)sx) = V (x, nsk) if x ∈ N and V (x, (n + 1)sx) > V (x, nsk) if x ∈ G are

analogous.

(b) For each x ∈ Av, one of the following conditions holds: V (x, 2sx) < V (x, sx),

V (x, 2sx) = V (x, sx), or V (x, 2sk) > V (x, sx). By (a),

B = {x ∈ Av : V (x, 2sx) < V (x, sx)},
N = {x ∈ Av : V (x, 2sx) = V (x, sx)},
G = {x ∈ Av : V (x, 2sx) > V (x, sx)}.

Thus, B,N, and G partition Av.

(c) Let (x, y, z) ∈ B × N × G. By way of contradiction, suppose that x ≥ y. Let

X = sy ⊗ Sx and Y = sx ⊗ Sy and note that |X| = |Y |. Since A(v,X) = x,

42



A(v, Y ) = y, and v, V is a strength & weight representation, X % Y . By (a),

V (x, |X|) > V (x, 2|X|) and V (y, |Y |) = V (y, 2|Y |). Since v, V is a strength & weight

representation, X � 2 ⊗ X and Y ∼ 2 ⊗ Y . By sorting, X % Y and X � 2 ⊗ X
imply that Y � 2 ⊗ Y , a contradiction. Thus, x < y. It remains to show that

y < z. Suppose instead that y ≥ z. Let Y = sz ⊗ Sy and Z = sy ⊗ Sz and note

that |Y | = |Z|. Since A(v,X) = x, A(v, Y ) = y, and v, V is a strength & weight

representation, Y % Z. By (a), V (y, |Y |) = V (y, 2|Y |) and V (z, |Z|) < V (z, 2|Z|).
Since v, V is a strength & weight representation, Y ∼ 2 ⊗ Y and 2 ⊗ Z � Z. By

sorting, Y % Z and 2⊗Z � Z imply that 2⊗ Y � Y , a contradiction. Thus, y < z.

Altogether, x < y < z.

(d) Let x ∈ B, n ∈ N, S ∈ S be such that A(v, S) = x. If S = Sx, then (d) follows

immediately from (a). Suppose instead that S 6= Sx. By way of contradiction,

suppose that V (x, (n + 1)|S|) ≥ V (x, n|S|). Since, v, V is a strength & weight

representation, (n+ 1)⊗ S % n⊗ S. Let k = |S|+ sx. By monotonicity,

ksx ⊗ S % (ksx − 1)⊗ S % · · · % sx ⊗ S.

Thus, ksx⊗S % sx⊗S. By (a), x ∈ B implies V (A(v, Sx), k|S|sx) < V (A(v, Sx), |S|sx).
Since v, V is a strength & weight representation, k|S| ⊗ Sx ≺ |S| ⊗ Sx. Since

A(v, sx⊗S) = x = A(v, |S|⊗Sx), the sizes of sx⊗S and |S|⊗Sx are equal, and v, V

is strength & weight representation, sx ⊗ S ∼ |S| ⊗ Sx. Thus, ksx ⊗ S � k|S| ⊗ Sx.
However, since A(v, k|S|⊗Sx) = x = A(v, ksx⊗S), the sizes of k|S|⊗Sx and ksx⊗S
are the same, and v, V is strength & weight representation, k|S| ⊗ Sx ∼ ksx ⊗ S.

This contradiction confirms that V (x, n|S|) > V (x, (n + 1)|S|). The proof of the

conditions for N and G in (d) are analogous.

Proposition 13. Suppose that % satisfies monotonicity, sorting, approachability,

and that it has a strength & weight representation v, V . Then v, V is convergent.

Proof. Let all the assumptions and notation be as specified in the above statement.

Additionally, let B,N,G denote the partition of Av described in Proposition 12. The

first step is showing that,

for each x ∈ Av and each pair S, T ∈ S with A(v, S) = x = A(v, T ),

{V (x, n|S|)}n and {V (x, n|T |)}n converge to the same limit.
(34)
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Let x ∈ Av and S, T ∈ S be such that A(v, S) = x = A(v, T ). For each n ∈ N, define

an = V (x, n|S|) and bn = V (x, n|T |). By Proposition 12,

the sequences {an} and {bn} are strictly decreasing if x ∈ B,

constant if x ∈ N , and

strictly increasing if x ∈ G.

(35)

We now show that

{an} and {bn} have a common subsequence,

are bounded above if there is y ∈ Av with y > x, and

are bounded below if there is y ∈ Av with y < x.

(36)

For each k ∈ N, ak|S||T | = V (x, k|T ||S|) = bk|S||T |. Thus, {an} and {bn} have a

common subsequence. Let y ∈ Av and Q ∈ S be such that A(v,Q) = y. Define

S ′ = |Q| ⊗ S and Q′ = |S| ⊗ Q. Since S ′ and Q′ are of equal size, A(v, S ′) = x,

A(v,Q′) = y, and % has a strength & weight representation, the following is true:

Q′ � S ′ if y > x and Q′ ≺ S ′ if y < x. By Proposition 1, for each positive integer m,

m⊗Q′ � m⊗S ′ if y > x andm⊗Q′ ≺ m⊗S ′ if y < x. Thus, by approachability, there

is a positive integer m such that, for each integer k greater than m, m⊗Q′ � k⊗S ′

if y > x and k ⊗ Q′ ≺ m ⊗ S ′ if y < x. Thus, there is a positive integer m such

that, for each integer k greater than m, ak|S′| = V (x, k|S ′|) < V (y,m|Q′|) if y > x

and ak|S′| = V (x, k|S ′|) > V (y,m|Q′|) if y < x. Thus, {an} has a subsequence

that is bounded above if y < x and it has a subsequence that is bounded below if

y < x. By (35), {an} is monotone. Thus, {an} is itself is bounded above if y > x

and bounded below if y < x. The same argument can be applied to reach the same

conclusions for {bn}.
The sequences {an} and {bn} converge to the same limit:

Case 1. x ∈ B. By (35), if x ∈ B, then {an} and {bn} are decreasing. By (36),

if there is y ∈ Av such that y < x, both sequences are bounded below. Thus,

both sequences are convergent. If there is no y ∈ Av such that y < x, then

{an} and {bn} are also convergent since they are decreasing, this allowing for

the possibility that the limit of one or both of the sequences is −∞. By (36),

{an} and {bn} have a common subsequence and thus converge to same limit.
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Case 2. x ∈ N . By (35), {an} and {bn} are constant. By (36), both sequences

have a common subsequence and are thus identical. Trivially, both sequences

converge to the same limit.

Case 3. x ∈ G. By (35), if x ∈ G, then {an} and {bn} are increasing. By (36),

if there is y ∈ Av with y > x, both sequences are bounded above. Thus, both

sequences are convergent. If there is no y ∈ Av with y > x, then {an} and

{bn} are also convergent since they are increasing, this time allowing for the

possibility that the limit of one or both of the sequences is ∞. By (36), {an}
and {bn} have a common subsequence and thus converge to same limit.

The convergence of {an} and {bn} to a common limit proves (34).

Let V : Av → R∪{−∞,∞} be such that, for each x ∈ Av, V(x) is the limit of the

sequence {V (x, n|S|)}n where S ∈ S is such that A(v, S) = x. By (34), the function

V is well defined.

To show that V is increasing, let x, y ∈ Av be such that x > y. Let S, T ∈ S be

such that A(v, S) = x and A(v, T ) = y. Let S ′ = |T | ⊗ S and T ′ = |S| ⊗ T . Since

A(v, S ′) = x, A(v, T ′) = y, |S ′| = |T ′|, and % has a strength & weight representation,

T ′ � S ′. By Proposition 1, for each positive integer m, m⊗ T ′ � m⊗ S ′. Thus, by

approachability, there is a positive integer m such that, for each integer k greater

than m, k ⊗ T ′ � m⊗ S ′ and m⊗ T ′ � k ⊗ S ′. Thus, there is a positive integer m

such that,

for each integer k greater than m, V (y, k|T ′|) > V (x,m|S ′|) and

V (y,m|T ′|) > V (x, k|S ′|).
(37)

Case 1. y ∈ B. By (c) in Proposition 12, y ∈ B and y > x imply that x ∈ B. By

(d) in Proposition 12, {V (y, k|T ′|)}k and {V (x, k|S ′|)}k are strictly decreasing.

By the definition of V , the first of these sequences converges to V(y) and the

second one converges to V(x). By the first inequality in (37), V (x,m|S ′|) is a

lower bound for {V (y, k|T ′|)}k. Thus, V(y) ≥ V (x,m|S ′|) > V(x).

Case 2. y ∈ N . By (c) in Proposition 12, y ∈ N and y > x imply that either

x ∈ B or x ∈ N . By (d) in Proposition 12, {V (y, k|T ′|)}k is a constant sequence

and {V (x, k|S ′|)}k is strictly decreasing if x ∈ B and constant if x ∈ N . By
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the definition of V , the first of these sequences converges to V(y) and the

second one converges to V(x). Since S ′ and T ′ are of the same size and y > x,

V (y,m|T ′|) > V (x,m|S ′|). Thus, V(y) = V (y,m|T ′|) > V (x,m|S ′|) ≥ V(x).

Case 3. y ∈ G. By (d) in Proposition 12, {V (y, k|T ′|)}k is strictly increas-

ing. By the second inequality in (37), V (y,m|T ′|) is an upper bound for

{V (x, k|S ′|)}k. By the definition of V , the first of these sequences converges to

V(y) and the second one converges to V(x). Thus, V(y) > V (y,m|T ′|) ≥ V(x).

Thus, in each of the possible cases, V(y) > V(x) if y > x. The strength & weight

representation v, V is thus convergent.

Proof of Theorem 2. Suppose that the set of outcomes has a cardinality of two and let

O = {α, β}. Suppose that % satisfies sensitivity, cancellation, monotonicity, sorting,

and approachability. By Theorem 1, % has a strength and weight representation

v, V . By Proposition 13, v, V is convergent.

It remains to show that v, V is ordered. For each x ∈ Av, let Sx ∈ S denote the

smallest sample with A(v, Sx) = x and let sx = |Sx|. We first show that,

for each x ∈ Av and each S ∈ S with A(v, S) = x, |S| is a multiple of sx. (38)

Let x ∈ Av and S ∈ S be such that A(v, S) = x. If sx = 1, then (38) is true since

|S| is a multiple of one. Suppose instead that sx > 1. Since v is not constant,

A(v, S) = x implies that S(α)/|S| = Sx(α)/sx. Letting n denote the largest integer

not exceeding S(α)/Sx(α),

|S| = S(α)

Sx(α)
sx = nsx +

S(α)− nSx(α)

Sx(α)
sx.

If the second term in the above summation is zero, then (38) is proven. By way of

contradiction suppose that this is not the case. Since |S| and nsx are integers, is an

integer and S(α)−nSx(α)
Sx(α)

sx ≡ k is also an integer. Then, Sx(α)
sx

= S(α)−nSx(α)
k

. By the

definition of n, S(α) − nSx(α) < Sx(α). Then, k < sx. Let T ∈ S be such that

|T | = k and T (α) = S(α) − nSx(α). Then, A(v, T ) = x and |T | < sx. This is a

contradiction since, by definition, Sx as the smallest sample such that A(v, S) = x.

Thus, there is n ∈ N such that |S| = nsx, confirming (38).
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By Proposition 12, Av can be partitioned into up to three sets B,N,G such that,

for each (x, y, z) ∈ B ×N ×G, x < y < z and, for each n ∈ N,

V (x, (n+ 1)sx) < V (x, nsx) if x ∈ B,

V (y, (n+ 1)sy) = V (y, nsy) if y ∈ N ,

V (z, (n+ 1)sz) > V (z, nsz) if z ∈ G.

By (38), for each x ∈ B and each n ∈ N, there are no S ∈ S and k ∈ N such that

A(v, S) = x and |S| = nsx + k ≤ (n+ 1)sx − 1. Thus, the values

V (x, nsx + 1), V (x, nsx + 2), . . . , V (x, (n+ 1)sx − 1)

can be chosen so that

V (x, nsx) > V (x, nsx + 1) > · · · > V (x, (n+ 1)sx − 1) > V (x, (n+ 1)sx).

Then, for each x ∈ B and each n ∈ N, V (x, n + 1) < V (x, n). Similarly, we can

specify the values of V so that, for each x ∈ B and each n ∈ N, V (x, n+1) = V (x, n),

and, for each x ∈ B and each n ∈ N, V (x, n + 1) > V (x, n). Thus, v, V satisfies

condition (5) and is hence ordered. The first statement in Theorem 2 thus implies

the second one. We omit the straightforward proof that the second statement in

Theorem 2 implies the first one.

Proof of Theorem 4. Suppose that O is a convex subset of Euclidean space.

Suppose that % satisfies sensitivity, cancellation, monotonicity, sorting, approach-

ability, and continuity. By Theorem 3, % has a strength and weight representation

v, V . By Proposition 13, v, V is convergent.

It remains to show that v, V is ordered. For each x ∈ Av, let Sx ∈ S denote

the smallest sample with A(v, Sx) = x and let sx = |Sx|. By Theorem 3, v is

continuous. Thus, v(O) is an interval in the real line and v(O) = Av. Thus, by

Proposition 12, v(O) can be partitioned into up to three sets B,N,G so that, letting

(x, y, z) ∈ B × N × G, x < y < z. Thus, there are α, β, γ ∈ O such that v(α) = x,

v(β) = y, and v(γ) = z. Thus, sx = sy = sz = 1. By (a) in Proposition 12,

V (x, n) > V (x, n+ 1), V (y, n) = V (y, n+ 1), V (z, n) < V (z, n+ 1).
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Thus, v, V satisfies condition (5) and is hence ordered. The first statement in The-

orem 4 thus implies the second one. We omit the straightforward proof that the

second statement in Theorem 4 implies the first one.

Proof of Theorem 6. Theorem 6 is an immediate corollary of Theorem 7 below.

Theorem 7. If the set of outcomes O is either finite or countably infinite, then the

following statements are equivalent.

i. % satisfies sensitivity, cancellation, Archimedean, monotonicity, sorting, and

approachability.

ii. % has a convergent strength & weight representation v, V with the following

property: Av can be partitioned in up to three sets B,N,G such that, for each

(x, y, z) ∈ B ×N ×G, x < y < z and, for each n ∈ N,

V (x, n|S|) > V (x, (n+ 1)|S|) if x ∈ B and S ∈ S satisfies A(v, S) = x,

V (y, n|S|) = V (y, (n+ 1)|S|) if y ∈ N and S ∈ S satisfies A(v, S) = y,

V (z, n|S|) < V (z, (n+ 1)|S|) if z ∈ G and S ∈ S satisfies A(v, S) = z.

Proof. Suppose the set of outcomes O is either finite or countably infinite.

Suppose that % satisfies sensitivity, cancellation, Archimedean, monotonicity,

sorting, and approachability. Then, by Theorem 5, % has a strength & weight

representation v, V . By Proposition 13 and by (d) in Proposition 12, v, V satisfies

all the conditions in the the second statement (ii) of Theorem 7. The first statement

in Theorem 7 thus implies the second one. We omit the straightforward proof that

the second statement in Theorem 7 implies the first one.
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